

LTorregrosa¹, H. Ojeda², A. Carbonneau¹, A. Samson², M. Stoll³ & V. Novello⁴

¹Montpellier SupAgro-IHEV, UMR AGAP & UEPR INRA Pech-Rouge, ²INRA, UEPR INRA Pech-Rouge ³Hochschule Geisenheim University, ⁴Turin University, Dip. Scienze Agrarie, Forestali e Alimentari

Outline

- > What is wine quality and why the regulation of alcool contents is critical?
 - @ Modifications of cultivation practices
 - + Early harvest or block mapping
 - + Source/sink or PS efficiency
 - + Vigor, phenology & microclimate
 - @ Cultivar selection and improvement
 - + Rootstock adaptation
 - + Cultivar selection

> Conclusions

Rationales

Practice modifications Cultivar adaptation Conclusions

What are the main component of wine quality?

Nutrition

Water: wine is a liquid

Salts (cations): Ca, K

... up to 85%

.... up to Ig/I

Metabl

Alcool(s): **ethanol**, glycerol

Sugars: F & G

Acids: tartaric/malic, citric

... up to 15%

... up to 100g/l

.... up to 5gr/l

Metab2

Tannins (qty and forms)

Anthocyanidins

Aromas and flavors

... up to Ig.I

... up to Ig.I

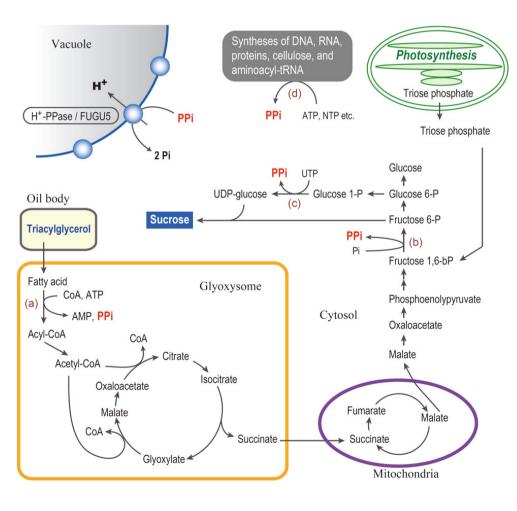
... less than µg*

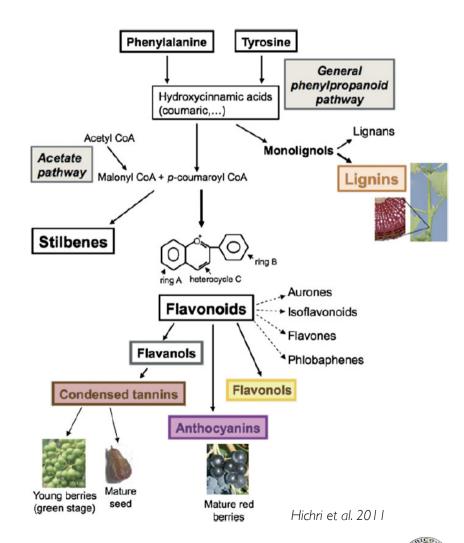
*IBMP (isobutyl-methoxy-pyrazine) 20-50 ng/kg

^{*}Terpenols (linalol, geraniol) 0.5-1 µg/kg

What are the main component of wine quality?

These compounds are not co-localized...

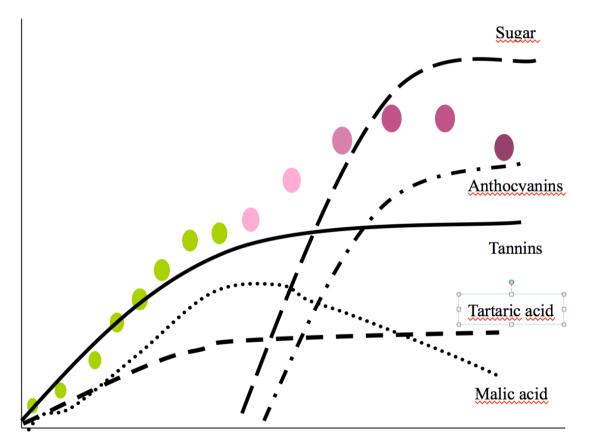




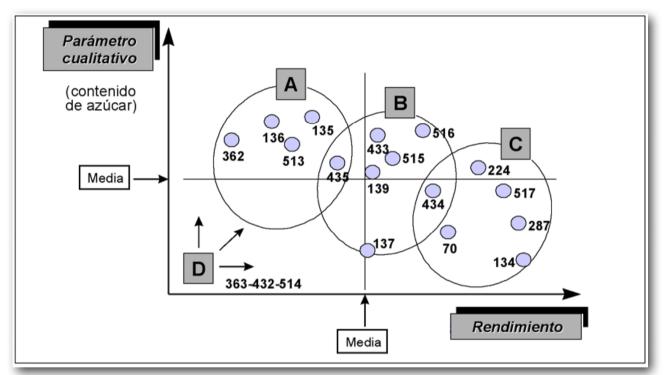
Conclusions

What are the main component of wine quality?

These pathway are not strictly linked....



But quality compounds fit sugar accumulation!

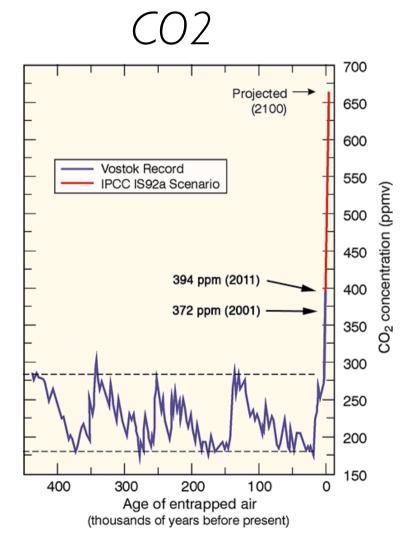

> Natural dispersers for grape seeds are birds
Anthocyanins are signals
Sugar and flavors are rewards

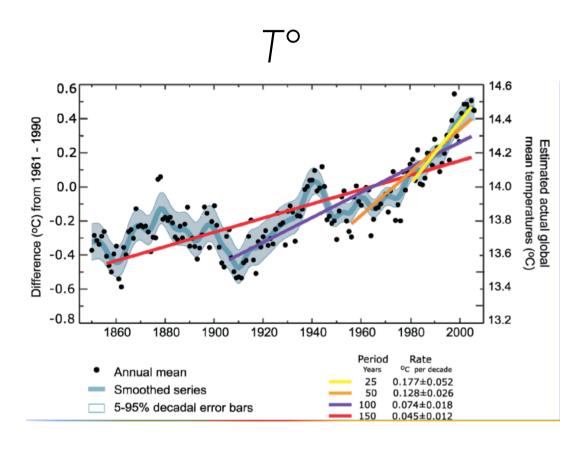
But quality compounds fit sugar accumulation!

Scarzi (2002) d'après Oustric (1994)

- > Human domestication selected cvs with high sugar contents
- > Modern clonal selection reinforced this tendency ("

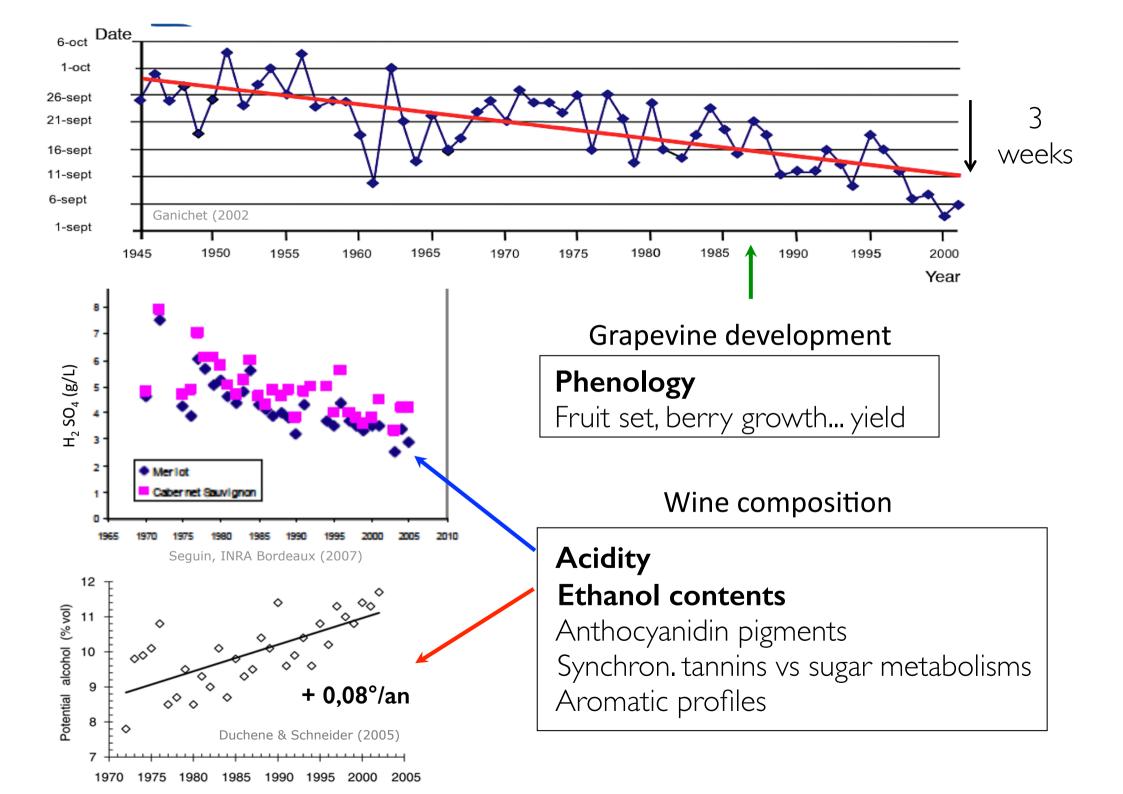
Ethanol-rich wines are more stables Ethanol was expected in wines and linked to attractive sensations

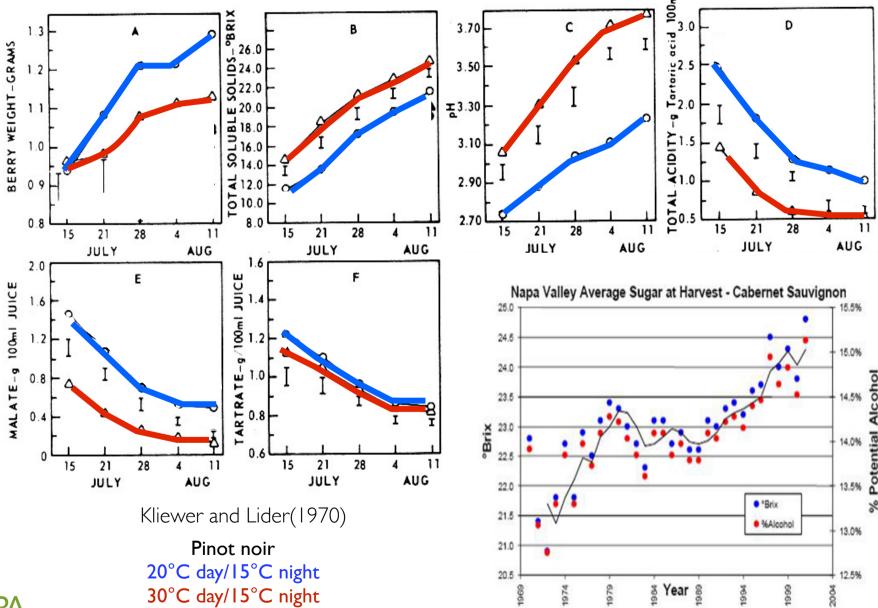




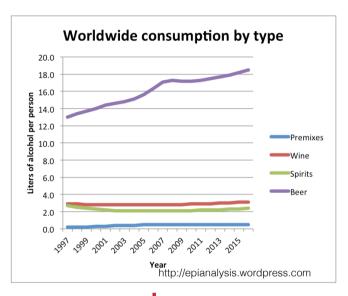
Why sugar content becomes a problem?

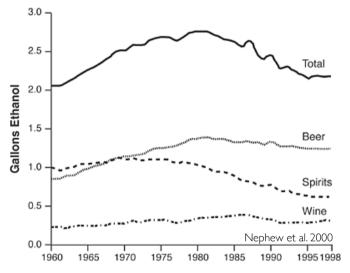
> I. Climate changes

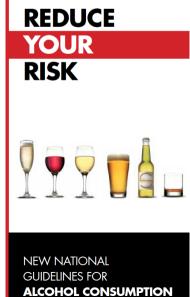




Why sugar content becomes a problem?






Why sugar content becomes a problem?

> 2. Consumers habits

Per capita consumption of beer, wine, and spirits, and total alcohol consumption in the United States, 1960–1998

Practice modifications Cultivar adaptation Conclusions

1. Viticultural practices

Shading

Mist cooling

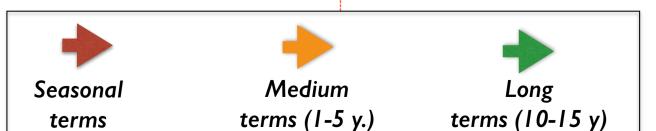
Canopy management

De-alcoolization

New yeast strains

Water dilution

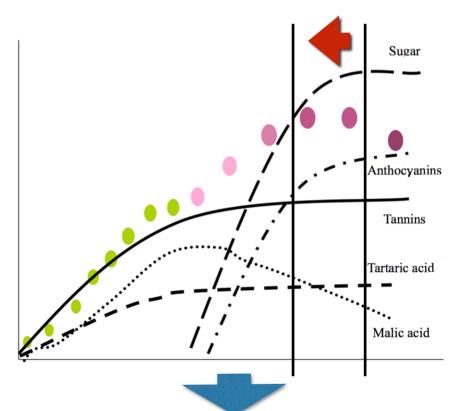
3. Change growing area

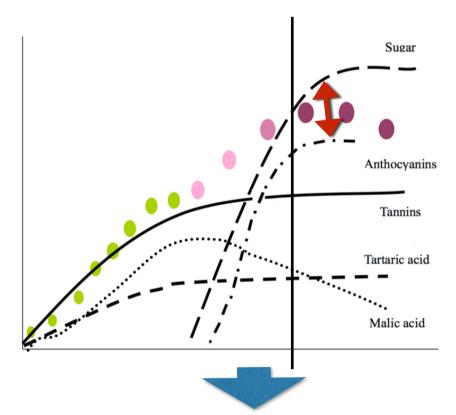


Move to a cooler latitude

Selection from germplasm

Breeding new cultivars




To decrease sugar content in the vineyard: 2 options

I. Harvest earlier?

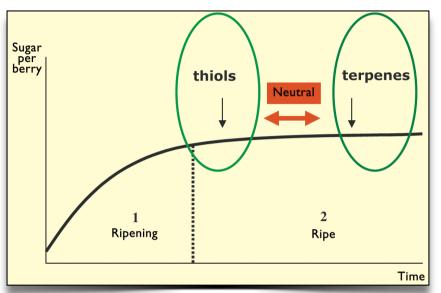
Only possible for some cultivars? and mostly for rosé/white wines?

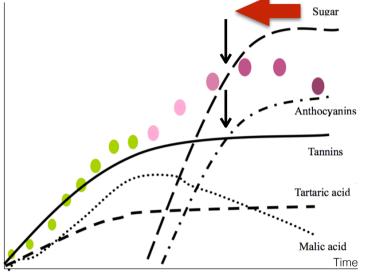
I. Desynchronize metabolisms?

Slowing down sugar flux towards the berry (metabl)

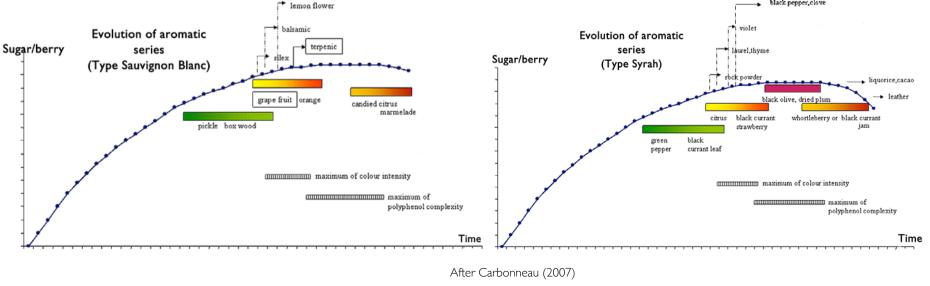
Outline

- > What is wine quality and why the regulation of alcool contents is critical?
 - @ Modifications of cultivation practices
 - + Early harvest or block mapping
 - + Source/sink or PS efficiency
 - + Vigor, phenology & microclimate
 - @ Cultivar selection and improvement
 - + Rootstock adaptation
 - + Cultivar selection
- > Conclusions

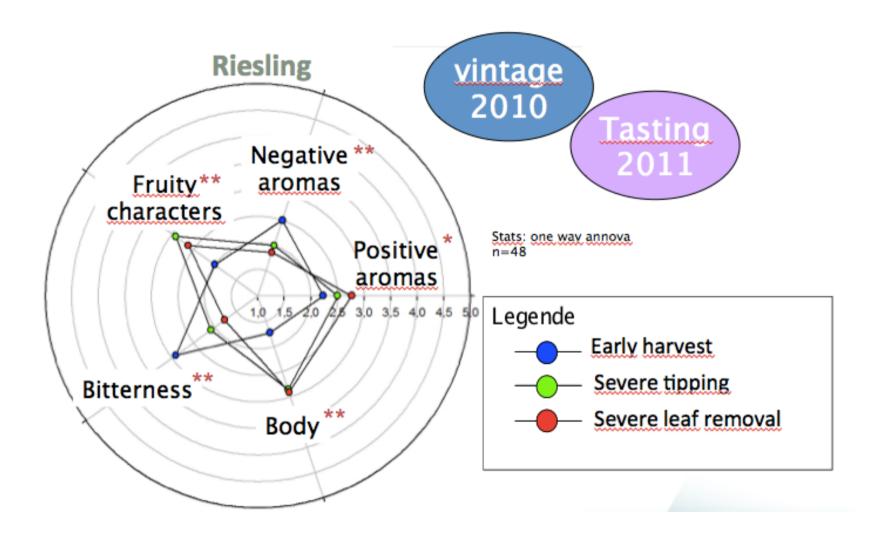




Harvest selection Source/sink Water supply Microclimate



Early harvest Double harvest Selective harvest


black pepper, clove

After Deloire (2006)

Geisenheim

Harvest selection
Source/sink
Water supply
Microclimate

@ Modifications of cultivation practices

- + Early harvest or block mapping
- + Source/sink or PS efficiency
- + Vigor, phenology & microclimate

1. Hampers biomass accumulation:

Reduce Leaf Area (decrease sugar unloading) improving microclimate (i.e. light exp.)

> Same date of harvest regarding polyphenols (red) and flavors (whites)

Or

2. Stimulate biomass acquisition changing C partitioning: High Exposed Leaf Area (metab 2 better promoted than 1)

> Harvest earlier regarding polyphenols (Reds)

> Reduce PS area

Shoot tipping, leaf and lateral removal
From fruit-set to "véraison"
Reduce the velocity of berry maturation
Reduce final sugar content

Harvest selection
Source/sink
Water supply
Microclimate

> Classical leaf removal around the bunches is not effective

Table 1. Yield and berry quality of Maréchal Foch after plant canopy management techniques of leaf and lateral removal around the fruiting clusters.^y

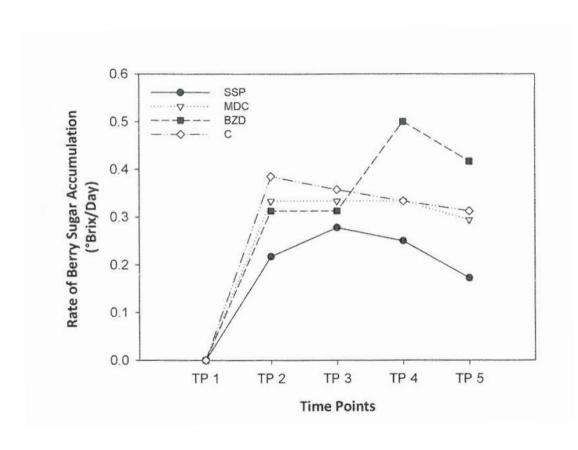
Treatment ^z	Yield per plant	Cluster	Avg. berry	Soluble solids	Initial pH	Titratable
Treatment	(total lb)	number	weight (g)	concentration (%)	пппат рн	acid (%)
Control (trt 1)	13.0	78	1.12 Co	ntrol 20.0 a	3.55 a	0.80 b
Treatment 2	15.3	85	1.11	18.9 b	3.39 b	0.92 a
Treatment 3	15.8	96	1.15	18.8 b	3.41 b	0.92 a
Treatment 4	16.4	94	1.14	19.2 b	3.49 ab	0.81 b
LSD $P \le 0.05^x$	NS	NS	NS	0.5	0.13	0.08

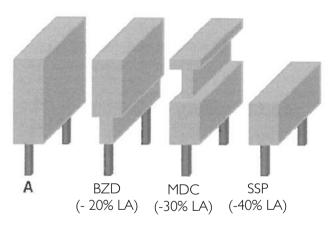
^zTreatment: 1) Control, no leaves or laterals removed, 2) leaf and lateral removed from across each cluster, 3) leaves and laterals removed from across each cluster and one node above each cluster, and 4) leaves and laterals removed from across each cluster, one node above, and one node below each cluster.

Table 2. Yield and berry quality of Vignoles after plant canopy management techniques of leaf and lateral removal around the fruiting clusters.^y

Treatment ^z	Yield per plant (total lb)	Cluster number	Avg. berry weight (g)	Soluble solids concentration (%)	Initial pH	Titratable acid (%)
Control (trt 1)	1.52	17	1.72 Co	ntrol 22.8 a	3.07 b	1.29
Treatment 2	1.37	13	1.77	20.9 b	3.07 b	1.26
Treatment 3	1.36	14	1.67	22.3 ab	3.04 b	1.30
Treatment 4	2.28	18	1.66	22.8 a	3.15 a	1.27
LSD $P \le 0.05^x$	NS	NS	NS	1.45	0.07	NS

^zTreatment: 1) Control, no leaves or laterals removed, 2) leaf and lateral removed from across each cluster, 3) leaves and laterals removed from across each cluster and one node above each cluster, and 4) leaves and laterals removed from across each cluster, one node above, and one node below each cluster.

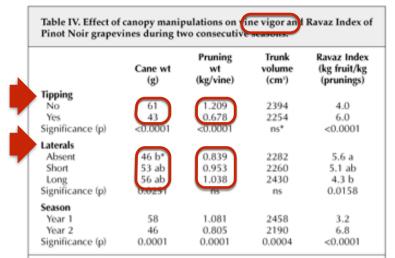




Seeley et al., 2009

> A strong limitation of PS is necessary

Stoll et al. 2013 - Effect of leaf removal on Riesling sugar unloading


Table III. Effect of canopy manipulations of canopy architecture of Pinot Noir grapevines during the second season of application of the treatments.										
	Main leaves size (cm²)	Lateral leaves size (cm²)	Main leaf area/vine (m²)	Lateral leaf area/vine (m²)	Total leaf area/vine (m²)	Lateral leaf area percent of total	Leaf:fruit ratio cm²/g fruit			
Tipping							_			
No	99	31	5.69	2.13	7.82	24	15			
Yes	113	38	2.47	1.73	4.18	32	11			
Significance (p)	0.0067	0.0103	< 0.0001	ns*	< 0.0001	0.0049	0.0031			
Laterals										
Absent	98	_	4.17	_	3.89 b*	_	9 b			
Short	109	33	4.24	2.57	6.81 a	39 b	14 a			
Long	112	35	3.80	3.22	7.02 a	46 a	15 a			
Significance (P)	ns	ns	ns	< 0.0001	0.0019	< 0.001	0.0005			
Leaf Removal							_			
No	109	37	4.50	2.19	6.68	29	15			
Yes	103	32	3.64	1.68	5.32	28	10			
Significance (p)	ns	ns	ns	ns	ns	ns	0.0012			

*Values followed by the same letters within main factors and columns do not differ significantly; ns: not significant at the

5% level. Interactions between main factors were not significant.

	Soluble solids °Brix	Juice pH	Titratable acidity (g/L)	Skin antho- cyanins (mg/berry)	Skin antho- cyanins (mg/g fruit
Tipping	22.5	2.22		0.000	0.701
No Yes	22.5 21.9	3.23 3.19	7.24 7.52	0.933 0.885	0.791 0.757
Significance (p)	<0.0001	0.0192	ns*	ns	ns
Laterals					
Absent	21.7 c*	3.17 b	7.62	0.849 b	0.722 b
Short	22.2 b	3.22 ab	7.30	0.912 ab	0.772 ab
Long	22.7 a	3.24 a	7.21	0.966 a	0.828 a
Significance (p)	<0.0001	0.0045	ns	0.0076	0.0149
Leaf Removal					
No	22.5	3.22	7.50	0.924	0.789
Yes	21.9	3.20	7.26	0.894	0.760
Significance (p)	0.0001	ns	ns	ns	ns
Season					
Year 1	22.8	3.27	7.07	0.938	0.741
Year 2	21.6	3.15	7.69	0.880	0.807
Significance (p)	< 0.0001	< 0.0001	0.0006	ns	0.0270

^{*} Values followed by the same letters within main factors and columns do not differ significantly; ns: not significant at the 5% level. Interactions between main factors were not significant.

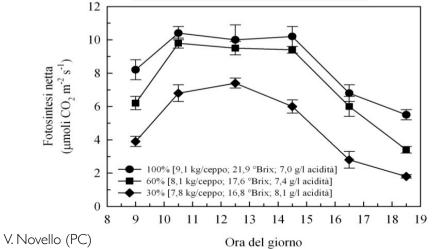
^{*}Values followed by the same letters within main factors and columns do not differ significantly; ns: not significant at the 5% level.

	Starch concentration	Sugar concentration	TNSC concentration	Starch g/trunk	Sugar g/trunk	TNSC g/trunk
Tipping						
No	9.3	3.9 a*	13.2	172.0	71.9 a	244.0
Yes	9.7	3.5 b	13.1	170.4	59.4 b	226.9
Significance (p)	ns*	0.0034	ns	ns	0.0011	ns
Laterals						
Absent	9.0	3.5	12.5	156.0	59.0 b	210.7 b
Short	9.4	3.6	13.1	170.1	64.9 ab	235.0 ab
Long	10.0	4.0	13.9	107.0	73.1 a	260.7 a
Significance (p)	ns	ns	ns	ns	0.0105	0.0186
Season						
Year 1	11.9 a	3.7	15.7 a	225.5 a	69.6 a	292.2 a
Year 2	7.0 b	3.7	10.7 b	117.0 b	61.7 b	178.7 b
Significance (p)	< 0.0001	ns	< 0.0001	< 0.0001	0.0362	< 0.0001

^{*}Values followed by the same letters within main factors and columns do not differ significantly; ns: not significant at the 5% level. Interactions between main factors were not significant.

> Possible effects on fruitfulness in long term!

Vasconcelos and Cagnoti (2009) Effect of leaf and lateral removal, and tipping on Pinot Noir


Harvest selection
Source/sink
Water supply
Microclimate

> PS efficiency: Shading nets*/powders or Anti-transpirant sprays

* extra action on T°

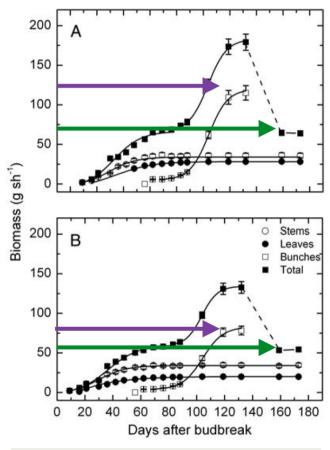
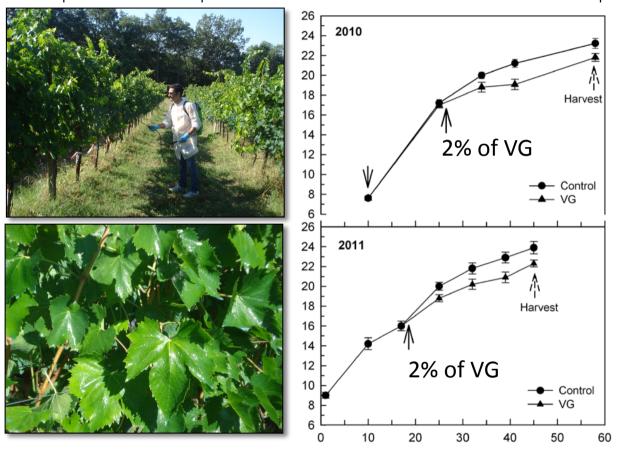


Fig. 1 Changes in dry weight accumulation of leaves, stems and bunches and the total biomass as indicated of shoots across the growing season on Semillon vines grown in an irrigated vineyard without (A) and with shade covering (B) and averaged over two growing seasons (means \pm SE, n = 18-36).


Greer et al., 2011

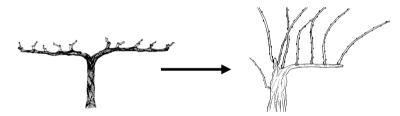
Harvest selection Source/sink Water supply Microclimate

Anti-transpirants = compounds from distillation of conifer resins 'pinolene'

Palliotti et al. (2013)

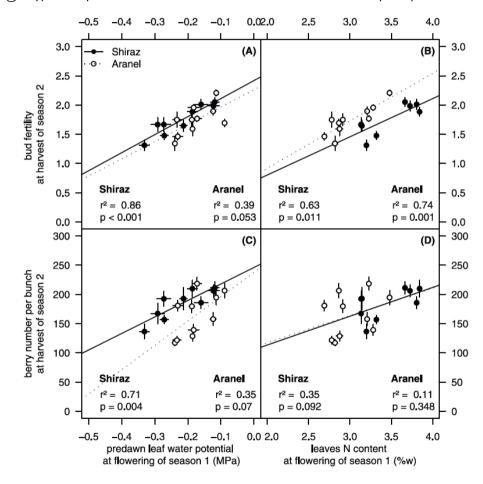
	Grechetto		Sar	ngiovese
	Control	Vapor Gard	Control	Vapor Gard
Alcohol (% vol.)	14.4 b	13.9 a	14.3 b	13.4 a
Titrat. Acidity (g/l)	4.3 a	4.7 a	4.1 a	4.2 a
рН	3.22 a	3.25 a	3.41 a	3.49 a
Anthocyans (mg/l)			149 b	101 a
Total Phenols(mg/l)	525 b	360 a	1536 a	1555 a

V. Novello (PC)


Harvest selection
Source/sink
Water supply
Microclimate

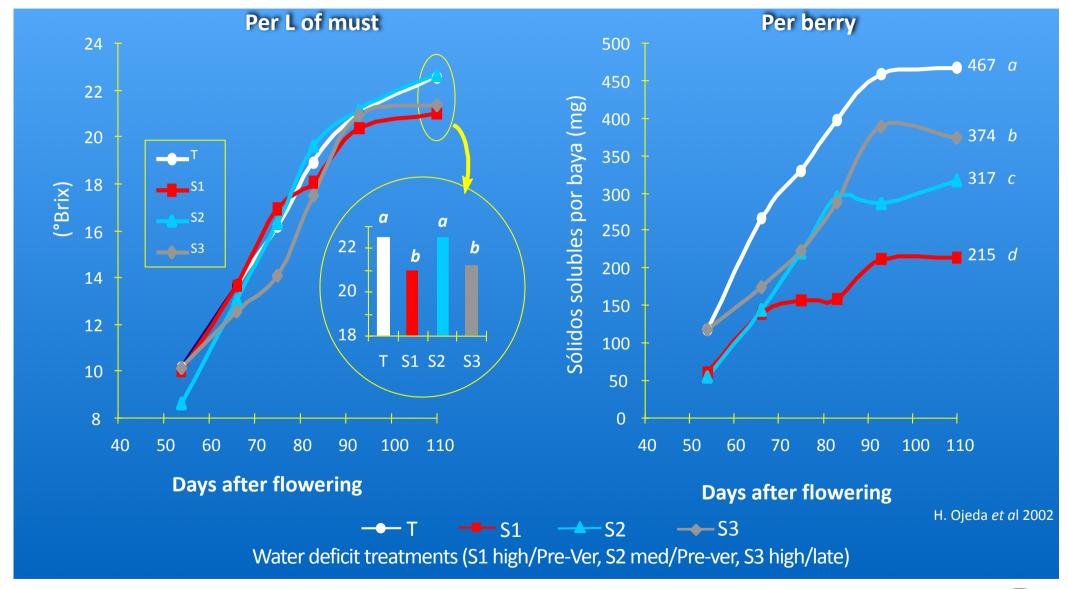
> Increase fruitfulness = increase sinks

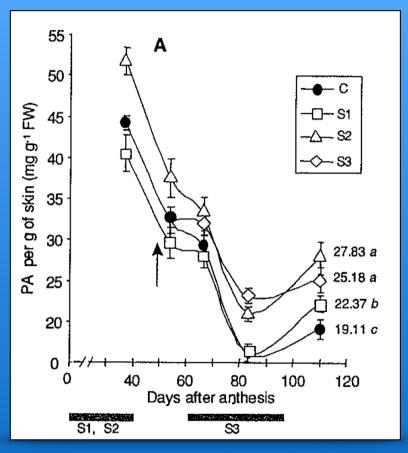
Increase bud load or fertility
Increase fertilisation (N, H2O)

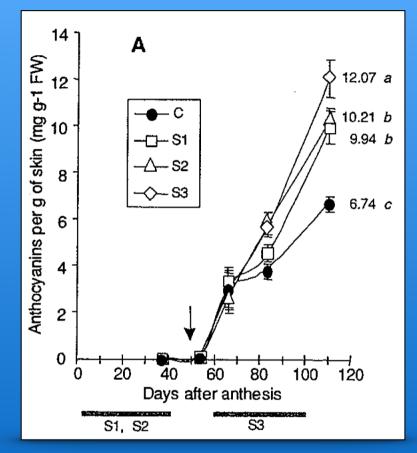

Use vigorous rootstocks
Use productive cvs & cl.

e.g. Pruning system (spur>cane pruning)

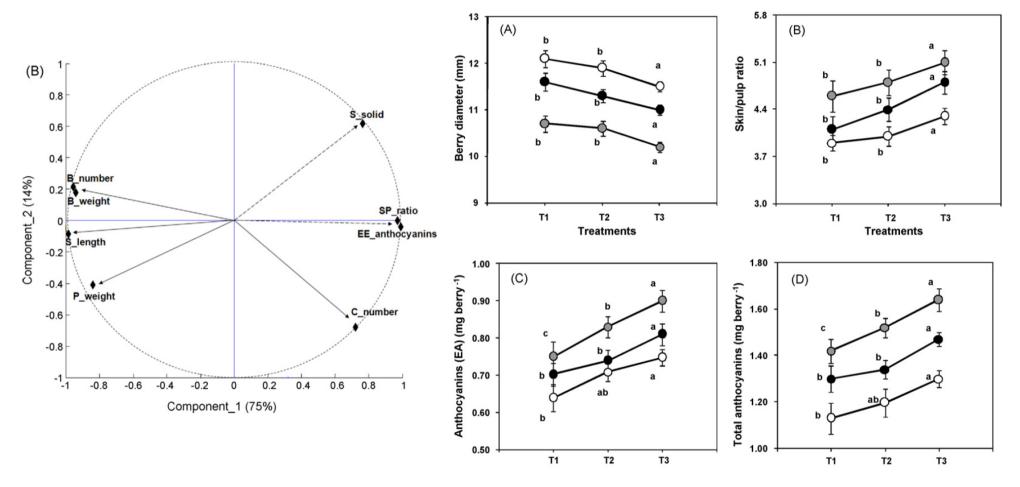
e.g. Effect of water and N status at Y-1 on bud fruitfulness at Y


Guilpart et al., 2014


Harvest selection Source/sink **Water supply** Microclimate

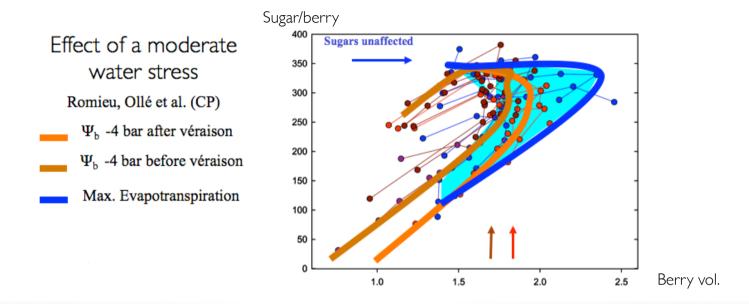


Harvest selection Source/sink **Water supply** Microclimate


--T --S1 --S2 --S

Water deficit treatments (S1 high/Pre-Ver, S2 med/Pre-ver, S3 high/late)

H. Ojeda et al 2002



Regulation of watering (CS): 3 vintages x 3 water supply charts (TI = low deficit, T2 = moderate deficit and T3 = severe deficit)

- > Severe preVer or postVer water deficits can decrease sugar maintaining polyphenol contents but with a yield loss (berry growth)....
- > Abundant and late irrigations (after véraison) decrease sugar & polyphenols by dilution (& resuming vegetative sinks = trophic competition) but with loss of quality....

Changing the canopy system (microclimate & yield)

e.g. Minimal Pruning or Lyre vs VSP

Increasing yield (sink) with high exposed leaf area (source)
Small berries located outside the canopy

>>> Lower sugar & pH with good balance and phenolics (GiESCO 2003, 2005, 2007, 2009, 2011, 2013)

Changing the canopy system (microclimate & yield) e.g. Minimal Pruning

Table 2. Yield data for spur pruned and minimal pruned Riesling vines

Mean + s.e. for three vines

		runed	Minimal pruned		
Harvest date:	1988-89 28 Feb. 1989	1989–90 6 Mar. 1990	1988-89 15 Mar. 1989	1989-90 21 Mar. 1990	
That vest date.	20 100, 1707	0 Mai. 1990	13 Wai. 1707	21 14141. 1990	
Yield (kg per vine)	$8 \cdot 4 \pm 1 \cdot 5$	$8 \cdot 3 \pm 0 \cdot 1$	$19 \cdot 1 \pm 1 \cdot 1$	$19 \cdot 3 \pm 2 \cdot 2$	
Yield (t ha^{-1})	$16 \cdot 7 \pm 3 \cdot 0$	$16\cdot 5\pm 0\cdot 2$	$38 \cdot 0 \pm 2 \cdot 2$	$38 \cdot 4 \pm 4 \cdot 4$	
Sugar (°Brix)	$21 \cdot 4 \pm 0 \cdot 6$	$20\cdot 5\pm 0\cdot 1$	18.1 ± 0.5	$17 \cdot 6 \pm 0 \cdot 6$	
Bunches per vine	$73 \cdot 0 \pm 10 \cdot 5$	$81 \cdot 0 \pm 1 \cdot 0$	$421 \cdot 0 \pm 28 \cdot 0$	$552 \cdot 0 \pm 2 \cdot 2$	
Bunch wt (g)	$113 \cdot 0 \pm 6 \cdot 0$	$102 \cdot 6 \pm 1 \cdot 7$	$45 \cdot 5 \pm 1 \cdot 3$	$34 \cdot 8 \pm 3 \cdot 0$	
Berries per bunch	$121 \cdot 3 \pm 9 \cdot 9$		$56 \cdot 7 \pm 2 \cdot 6$	-	
Berry wt (g)	$1\cdot30\pm0\cdot04$	_	0.80 ± 0.01	_	
Berry diameter (mm)	$13 \cdot 3 \pm 0 \cdot 5$		$11 \cdot 1 \pm 0 \cdot 1$		
Leaf area per fruit wt (cm ² /g)	$28\cdot 3\pm 5\cdot 1$	_	9.0 ± 0.5	_	
Cane (g dry wt)	2076 ± 247	_	497 ± 43		

Dowton and Grant (1992)

Harvest selection Source/sink Water supply **Microclimate**

Changing the canopy system (microclimate & yield)

e.g. Minimal Pruning

parameters varieties	Bacci	านร (1)	Müller	-Thurgau (1)	Silva	ner (2)
training system	MP	CPT	MP	CPT	MP	CPT
yield kg/100 m ²	154,3 a	141,7 a	150,5 a	133,7 a	297,6 a	96,6 b
must weight in °Oechsle	74,7 a	77,7 a	73,8 a	77,5 a	70,5 b	84,7 a
must acid g/l	6,2 a	6,4 a	5,8 a	7,00 a	9,0 a	7,2 b
leaf area m²/vine	13,9 a	4,3 b	14,4 a	4,0 b	36,0 a	4,5 b
leaf area index (LAI) m²/m²	5,79 a	1,79 b	6,00 a	1,67 b	9,60 a	1,20 b
leaf to fruit relation	2,54 a	0,91 b	3,40 a	0,91 b	2,19 a	0,95 a
total nitrogen in must mg/l	284 a	229 b	296 a	258 a	593 a	579 a
total amino acids in must in mg/l	1434 a	1043 a	1338 a	992 a	2203 a	2224 a
arginin in must in mg/l	402 a	238 b	370 a	259 a	969 a	1036 a
glutamin in must in mg/l	206 a	113 a	120 a	90 a	300 a	197 a
prolin in must in mg/l	106 a	134 a	187 a	137 a	49,6 a	114 a
methionin in must in mg/l	8,8 a	4,9 b	7,3 a	3,9 b	14,4 a	12,2 a
yeast assimilable amino nitrogen (YAN) mg/l must	276 a	181 b	231 a	167 a	514 a	514 a
residual extract in wine in g/l	8,35 a	6,90 b	5,30 a	3,92 a	7,94 a	8,13 a
sensoric valuation of wines (0-5 points)	1,86	1,8	2,01	1,9	1,63	1,47

Means with same letters are not significantly different at p < 0.05; MP = minimal pruning; CPT = cane pruned trellis,

Schwab (1995)

(2) site Erlabrunn, S-exposed, profound and humous sandy loam, 35 % inclination, autum-winter green cover, rootstock 5 C

⁽¹⁾ site Leinach, SW-site, sandy loam soil, 25 % inclination, permanent green cover, rootstock 5 C

Changing the canopy system (microclimate & yield)

CARACTERISTIQUES PHENOLIQUES DES VINS DE MERLOT EN SOL DE GRAVES ET AOC « PREMIERES CÔTES DE BORDEAUX » - INRA Bordeaux

	ESPALIER TRADITIONNEL	LYRE OUVERTE
1983		
D 280	27	33
Anthocyanes (mg/l)	308	325
Tanins (g/l)	1,27	1,74
Indice de p v p (%)	42	38
Indice HCI (%)	19	19
Indice de gélatine (%)	62	49
1984		
D 280	30	34
Anthocyanes (mg/l)	310	345
Tanins (g/l)	1,53	1,59
Indice de p v p (%)	56	58
Indice HCI (%)	15	13
Indice de gélatine (%)	45	30
1985		
D 280	30	42
Anthocyanes (mg/l)	398	560
Tanins (g/l)	1,50	1,97
Indice de p v p (%)	46	51
Indice HCI (%)	16	23
Indice de gélatine (%)	54	49
Tableau v	10	

Tableau x+8

Teneurs en 2-phényléthanol et en 2-phényléthyl acétate exprimées en μ g de linalol/100 ml de vin, pour le Gewurztraminer, la récolte 1987 et les systèmes de conduite vigne traditionnelle alsacienne $^{\circ}$ 0 et Vigne en lyreouverte (LO). Résultats de l'IINRA – Comar (Domaine de Rorschwihz)

2	6603
	90
	2

Teneur en phényl-2-éthanol (mg/l) des vins produits dans une parcelle argilocalcaire du Domaine INRA de Couhins (Appellation « Graves»). Résultats concernant le porte : gréfie Fercal et un niveau normal de fumure. Analyses de JP. ROSIER et A BERTRAND.

	1	988		1989	1	990	19	991	
Système de conduite	duite		n Sauvignon	uvignon Sémillon Sauvignon			Sémillon Sauvignon		
Lyre ouverte	25,0	30,0	22,2	15,5	42,0	40,2	21,0	11,4	25,9
Vigne étroite classique	17,4	15,7	20,9	10,8	31,1	30,5	17,8	10,4	19,3
Moyenne du millésime	2	2 Д		17,3		36	1	5,1	

Tableau x+10

Outline

- > What is wine quality and why the regulation of alcool contents is critical?
 - @ Modifications of cultivation practices
 - + Early harvest or block mapping
 - + Source/sink or PS efficiency
 - + Phenology, vigor & microclimate
 - @ Cultivar selection and improvement
 - + Rootstock adaptation
 - + Cultivar selection
- > Conclusions

> Effect of rootstock on Chenin blanc harvest characteristics (Loire valley)

1995	Harvest date	Yied Kg.vine	Ethanol % vol	Must sugars g/l	Total acidity g/l	рН	Tartaric g/l	Malic g/l
++ Fercal	18/10/1995	1,236	12,8 +++	217,7	4,7	3,32	2,97	3,20
Gravesac	18/10/1995	1,245	10,9	186,2	5,0	3,18	3,50	3,47
SO4	18/10/1995	1,012	11,1	188,4	5,0	3,15	4,15	3,10
1103P	18/10/1995	0,902	10,7	181,8	4,5	3,15	3,54	2,88
Rupestris	18/10/1995	0,899	11,4	194,0	4,5	3,36	2,19	3,55
3309C	18/10/1995	1,149	11,1	188,4	4,5	3,17	3,15	2,93
+++ 110R	18/10/1995	0,985	12,2 +++	207,5	4,3	3,29	2,75	3,21
+++ Riparia	18/10/1995	1,024	11,6 +++	196,3	5,1	3,10	3,43	2,79

1996	Harvest date	Yied Kg.vine	Ethanol , % vol	Must sugars g/l	Total acidity g/l	рН	Tartaric g/l	Malic g/l
+++ Fercal	28/10/1996	0,506	13,9 +++	237,0	4,14	3,60	4,43	2,39
Gravesac	28/10/1996	0,724	11,6	197,7	4,44	3,54	5,26	2,82
SO4	28/10/1996	0,551	13,1	222,9	4,87	3,53	5,35	3,00
1103P	28/10/1996	0,391	12,5	212.5	4,02	3,70	4,15	2,39
Rupestris	28/10/1996	0,453	11,6	197,7	4,09	3,64	4,14	2,66
41B	28/10/1996	0,599	12,0	204.5	4,26	3,55	5,26	2,37
3309C	28/10/1996	0,519	12,5	221,5	4,76	3,49	4,98	3,11
+++ 110R	28/10/1996	0,641	13,8 +++	234,6	4,48	3,61	3,76	3,40
101-14	28/10/1996	0,337	13,2	224,1	4,31	3,66	4,13	3,29
+++ Riparia	28/10/1996	0,582	13,1 +++	222,9	4,74	3,48	5,62	2,75

Millet (2000)

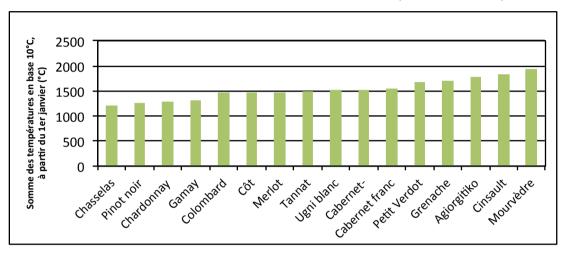
But:

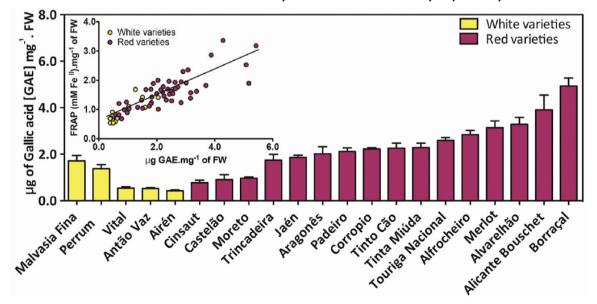
- 1. Interactions (practices x year x cultivar) x rootstock?
- 2. Difficult to control primary (sugar & acids) vs secondary metabolites

> New rootstocks with low-to-moderate vigor inducing capacities ?

Merbein series >>> color & phenolics (+ 20% in Shiraz with -1.5° Brix)

	Vigour	Harvest			Wine				
Shiraz/ Rootstock	Prun. Wt. (kg)	Juice ºBrix	Juice pH	Yield (kg)	Acid Added (g/L)	Wine pH	Colour Density (au)	Colour Hue	Total Phenolics (au)
1103 Paulsen	4.2c	25.6d	4.18d	11.8b	4.72d	3.57b	6.26ab	0.61b	53.8b
Ramsey	4.3c	25.2c	4.25e	16.7c	5.95e	3.58b	5.84a	0.59b	49.5a
Merbein 5489	2.0b	24.3b	3.83a	13.3b	1.90a	3.49a	7.56c	0.54a	60.9c
Merbein 5512	1.5ab	24.5b	3.91b	8.8a	2.72b	3.48a	6.55b	0.55a	56.8b
Merbein 6262	1.2a	23.7a	3.94b	9.9a	2.60ab	3.51a	8.17d	0.53a	62.4c

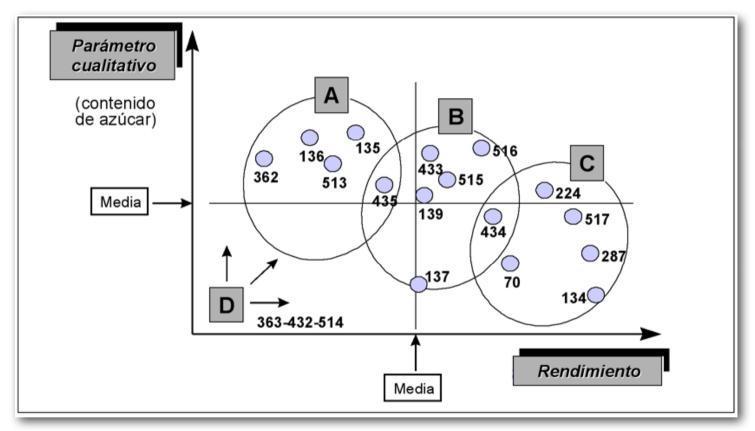

Canopy growth of Ramsey (left), Merbein 55 I 2 (middle) and Merbein 6262 (right), managed with deficit irrigation (season 2010).



> Use cultivars with late harvest period (needs higher \sum t° to ripe)

Van Leeuwen et al. (2008)

> Use cultivars with specific berry properties (e.g phenolics)


Teixeira et al. (2013)

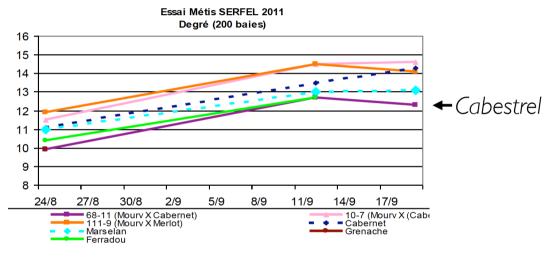
> Select new clones that higher fruitfulness

Scarzi (2002) d'après Oustric (1994)

But, this supposes

- 1. Some clonal diversity was secured in germplasm and still available?
- 2. Metab2 is not hampered regarding Metab1 (ex. Grenache cl. 70?)

> Select new cultivars on specific physiological new criteria

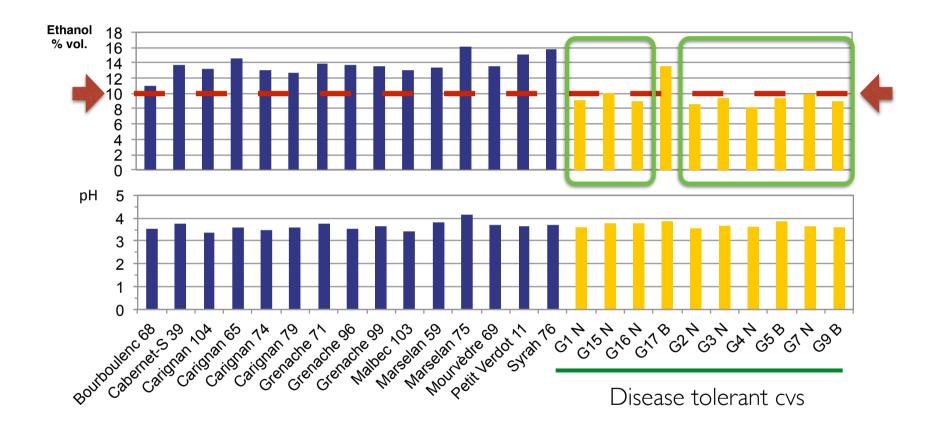

Cienna (2000)

 $(Sumoll \times CS)$

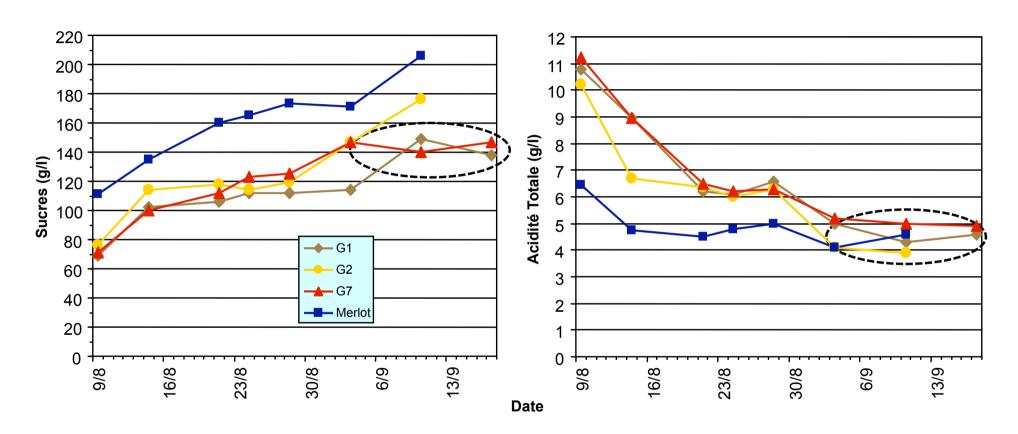
Cabestrel (2011)

(CS x Mourvèdre)

	2011					
	MARSELAN	Cabestrel	Ferradou			
Date de récolte	19/09/11	19/09/11	14/09/11			
Degré	11,8	11,5	12,2			
AT	3,18	4,2	4,86			
pН	3,86	4,05	3,19			
AV	0,47	0,64	0,38			
DO520/IPT	36	51	47			
IC	7,53	12,8	19			



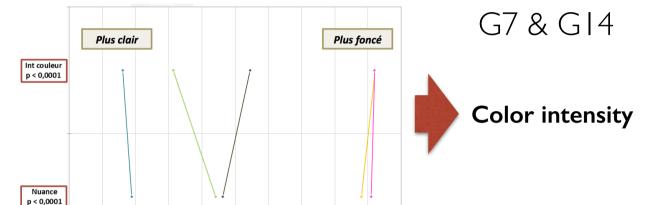
> Select new varieties (new metabolism dynamics)


VDQA project - A selection of classical cultivars and new accessions selected at INRA center of Pech-Rouge (Gruissan)

> Select new varieties (new metabolism dynamics)

VDQA project - A selection of classical cultivars and new accessions selected at INRA center of Pech-Rouge (Gruissan)

> GI, G2 and G7 are totally resistant to downy and powdery mildew



> Select new varieties (new metabolism dynamics)

Plus rouge orangé

Echantillon	Génotype	Variété				
2013_VDQA_G1_57	G1	3197-144				
2013_VDQA_G2_57	G2	3197-235				
2013_VDQA_G7_57	G7	3197-373				
2013_VDQA_G14_57	G14	3184-1-9				
2013_VDQA_Morr		Morrastel				

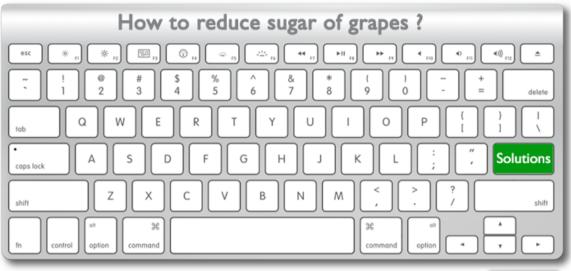
Plus rouge violet

---- G14-57

- G7-57


Tannins conc.

--•--- G1-57



> GI, G2, G7 and GI4 are totally resistant to downy and powdery mildew

- > Reducing alcohol levels in wine is a challenge for now and the future
- > Several **viticultural strategies** could be useful to face the problem
- > But grapevine has physiological plasticity (compensation responses)
 - > Grapes with low TSS may not have a suitable phenolic/aromatic potential
- > Experimental results do not show univocal and universal indications
 - > Best results could be obtained from combining several approaches*
 - > Most long term & promising approach: new cultivars!

